Diagonalruang pada balok merupakan ruas garis yang menghubungkan dua titik sudut yang telah berhadapan di dalam sebuah ruang. Untuk menghitung rumus diagonal ruang pada balok bisa menggunakan teorema Phytagoras. Diketahui panjang dari AB adalah 12 cm, BC adalah 8 cm, AE sepanjang 6 cm. Maka sekarang hitung luas bidang diahonal ABGH Menentukanjarak pada bangun ruang yang cukup istimewa, antara lain kubus yang diketahui panjang rusuknya, misalnya 6 cm atau 12 cm, dan gambarnya belum disediakan. Perhitungannya masih menyangkut gambar dasar, artinya, jika ada tambahan-tambahan ruas garis atau gambar bidang, ruas-ruas garis tersebut tidak memerlukan titik-titik lain yang JawabanDiketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang. Soal yang dimaksud adalah soal pada "Ayo Kita Berlatih 7.2" halaman 130 buku matematika kelas 7 kurikulum 2013 nomor 3. Untuk gambar setiap langkah-langkahnya dapat dilihat pada lampiran. Pembahasan. Cara pertama. Kita bagi garis AB tersebut menjadi 5 bagian dengan cara = 12 cm Γ· 5 = 2,4 cm Kubusabcd efgh dengan panjang rusuk 12cm. jarak antara bidang ADHE dan bidang BCGF adalah. Pertanyaan lain tentang: Matematika. Top 1: diketahui 12SMA Matematika GEOMETRI Diketahui balok ABCD EFGH dengan panjang AB = 15 cm, BC = 9 cm, dan CG = 12 cm. Jika titik M berada di ruas garis EH dengan EM : MH = 2 : 1 Dan titik N berada di ruas garis AD dengan AN : AD = 2 :, jarak garis AE ke bidang BFMN adalah Jarak Garis ke Bidang Dimensi Tiga GEOMETRI Matematika Rekomendasi video solusi lainnya 3 Garis PQ memotong garis HB di S. 4) Buat garis melalui titik S sejajar garis AC dan EG hingga memotong rusuk CG di R. Perhatikan gambar berikut! Ruas garis RS adalah jarak antara garis CG dan HB yang diminta. R S = Q C = 1 2 A C = 1 2 A B 2 + B C 2 = 1 2 12 2 + 12 2 R S = 6 2. Jadi, jarak antara garis CG dan HB adalah 6 2 cm. b. 12 cm ⁑ =12\\operatorname{cm} = 12 cm *Kita ketahui bahwa OC adalah setengah dari AC sehingga : O C = 1 2 A C OC=\\frac{1}{2}AC OC = 2 1 A C = 1 2. 12 =\\frac{1}{2}.12 = 2 1 .12 = 6 cm ⁑ =6\\operatorname{cm} = 6 cm *Lalu perhatikan segitiga TOC Berikut ! kita akan mencari panjang TO dengan menggunakan teorema phytagoras. T O = T C 2 βˆ’ O Diketahuijari-jari alas suatu tabung adalah 12 cm. Jika tinggi tabung tersebut 10 cm, tentukan volume tabung tersebut? A. 4.521,5 cmΒ³ B. 4.521,6 cmΒ³ hgf0uD8. ο»ΏSelasa, 22 Desember 2020 Edit Berikut ini adalah pembahasan dan Kunci Jawaban Matematika Kelas 7 Semester 2 Halaman 129 - 131 Bab 7 Garis dan Sudut Ayo Kita berlatih Hal 129 - 131 Nomor 1 - 9. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 7 di semester 2 halaman 129 - 131. Semoga dengan adanya pembahasan serta kunci jawaban ini adik-adik kelas 7 dapat menyelesaikan tugas Garis dan Sudut Matematika Kelas 7 Semester 2 Halaman 129 - 131 yang diberikan oleh bapak ibu/guru. Kunci Jawaban Matematika Kelas 7 Halaman 129 - 131 Ayo Kita Berlatih 1. Salinlah dua garis berikut. Kemudian dengan menggunakan jangka dan penggaris bagilah masing-masing garis menjadi 7 bagian yang sama panjang. Jawaban Langkahnya,1. Ukur panjang garis dengan penggaris2. Bagi hasil pengukuran dengan 73. Rentangkan jangka selebar hasil pengukuran4. Letakkan jarum jangka ke pada ujung garis5. Buat penanda dengan jangka pada garis6. Ulangi cara ke 5 pada penanda yang baru 2. Salinlah dua garis berikut. Kemudian bagilah masing-masing garis dengan perbandingan 2 3. Jawaban Langkahnya, 1. Ukur panjang garis dengan penggaris 2. Bagi hasil pengukuran dengan 5 3. Rentangkan jangka selebar 2 x hasil pengukuran 4. Letakkan jarum jangka ke pada ujung garis 5. Buat penanda dengan jangka pada garis 3. Diketahui panjang ruas garis AB adalah 12 cm. Bagilah ruas garis AB tersebut menjadi 5 bagian sama panjang. Jawaban Langkahnya, 1. Bagi 12 dengan 5 2. Rentangkan jangka selebar hasil bagi3. Letakkan jarum jangka ke pada ujung garis 4. Buat penanda dengan jangka pada garis 5. Ulangi cara ke 4 pada penanda yang baru 4. Perhatikan gambar berikut. Tentukan nilai p. Jawaban AD / CD = BE / CE3 / 9 = p / 12p = 12 x 3 / 9p = 4 cmJadi, nilai p adalah 4 cm. 5. Perhatikan gambar berikut. Tentukan nilai x. Jawaban 3 / 6 = x / 4 + 6x = 10 x 3 / 6x = 5Jadi, nilai x adalah 5 cm. 6. Perhatikan gambar berikut Tentukan nilai x dan y. Jawaban AD / BD = AE / CE6 / 4 = x / 2x = 6 x 2 / 4x = 3 cmDE / AD = BC / AD + BDy / 6 = 10 / 6 + 4y = 1 x 6y = 6 cmJadi, nilai x = 3 cm dan y = 6 cm. 7. Perhatikan gambar berikut Tentukan panjang AB. Jawaban EF = CD x AE + AB x DE / AE + DE9,8 = 8 x 7 + AB x 3 / 7 + 39,8 = 56 + 3AB / 1098 = 56 + 3AB3AB = 98 - 56AB = 42 / 3AB = 14 cmJadi, panjang AB adalah 14 cm. 8. Diketahui titik E, F, dan G pada trapesium ABCD. Sisi FE sejajar dengan sisi AB. Jika AB = 7, DC = 14, DG = 8, FG = 4, GB = x , dan GE = y , maka nilai x + y adalah Jawaban FG / AB = DG / BD4 / 7 = 8 / 8 + x4 x 8 + x = 8 x 732 + 4x = 564x = 56 - 32x = 24 / 4x = 6EG / CD = BG / BDy / 14 = x / x + 8y / 14 = 6 / 6 + 8y = 6 / 14 x 14y = 6x + y = 6 + 6 = 12Jadi, nilai x + y adalah 12. 9. Perhatikan gambar berikut. Diketahui Trapesium ABCD, dengan AB//DC//PQ. Jika perbandingan AQ QC = BP PD = 3 2. Jawaban AB / x = BD / PD 10 / x = 2 + 3 / 2 5x = 20 x = 4 cmDC / PQ + x = AC / AQ 20 / PQ + 4 = 3 + 2 / 3 PQ + 4 = 60/5 PQ = 8 cmJadi, panjang ruas garis PQ adalah 8 cm. 1 Tinjauan Geometris Perbandingan vektor Dalam operasi aljabar vektor kita tidak mengenal pembagian dua vektor. Dalam hal ini kita hanya menentukan perbandingan panjang dua vektor, atau perbandingan ruas garis. Secara geometris terdapat tiga aturan perbandingan ruas garis, yaitu Catatan Bentuk a dapat dinyatakan dalam kalimat β€œP membagi AB di dalam dengan perbandingan m n Bentuk b dan c dapat dinyatakan dalam kalimat β€œP membagi AB di luar dengan perbandingan m n Untuk lebih jelasnya ikutilah contoh soal berikut ini 01. Diketahui sebuah ruas garis AB dengan panjang 9 cm. Jika AP PB = 2 1, gambarlah letak titik P Jawab 02. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika AP PB = –2 1, gambarlah letak titik P Jawab 03. Diketahui sebuah ruas garis AB dengan panjang 4 cm. Jika P membagi AB di luar dengan perbandingan panjang 2 3, maka gambarkanlah letak titik P Jawab 2 Tinjauan Analitis Perbandingan Vektor Vektor posisi adalah vektor yang berpangkal di O0,0 dan dilambangkan dengan satu huruf kecil, sehingga Sebagai contoh diketahui A2, -3, 4 maka vektor posisi a adalah a = 2 i – 3 j + 4 k Jika OA + AB = OB Sebagai contoh jika diketahui A2, -1, 6 dan B-3, 2, 4 maka Menurut rumus perbandingan ruas garis Sehingga untuk AAx, Ay, Az dan BBx ,By, Bz serta PPx, Py, Pz terletak segaris dengan AB dan memiliki perbandingan AP PB = m n, maka berlaku 04. Misalkan P, Q dan R adalah tiga titik yang segaris dan berlaku PR RQ = –2 5 maka nyatakanlah vektor r dalam p dan q Jawab 05. Jika titik A, B dan P kolinier dengan perbandingan AP PB = –4 3 maka nyatakanlah vektor a dalam p dan b Jawab 06. Diketahui dua titik A6, 5, –5 dan B2, –3, –1 serta titik P pada AB sehingga AP PB = 3 1. Tentukanlah koordinat titik P Jawab AP PB = 3 1 07. Diketahui titik P2, –1, 3 dan R2, 4, 8 serta titik Q pada PR dengan perbandingan PR QR = 5 3. Tentukanlah koordinat titik Q Jawab PR QR = 5 3 PR RQ = 5 –3 08. Diketahui tiga titik yang segaris yaitu A7, 7, –2 dan C–3, 1, 4 dan B sehingga berlaku AC = β…” AB. Tentukanlah koordinat titik B Jawab Dua buah vektor dikatakan segaris kolinier jika kedua vektor itu sejajar atau terletak pada satu garis yang sama.. Misalkan terdapat tiga vektor yang segaris, seperti gambar berikut ini Jadi vektor a dan b dikatakan segaris jika terdapat nilai k Ρ” Real sehingga a = k. b Sedangkan tiga titik A, B dan C dikatakan segaris jika terdapat k Ρ” Real sehingga AB = k. AC Untuk lebih jelasnya ikutilah contoh soal berikut ini 10. Manakah diantara ketiga vektor berikut ini merupakan vektor yang segaris a = 2i – 4j + 5k , b = 8i – 16j + 10k c = 6i – 12j + 15k Jawab 11. Jika vektor a = 2 i – j + x k dan b = –6i + y j + 12 k segaris, maka tentukanlah nilai x dan y Jawab 12. Diketahui tiga titik yang segaris kolinier yaitu A2, –1, p, B8, –9, 8 dan Cq, 3, 2. Tentukanlah nilai p dan q Jawab Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui kubus dengan panjang rusuk 12 cm. K adalah titik tengah rusuk AB. Jarak titik K ke HC adalah .....Jarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0348Diketahui kubus dengan panjang rusuk 6 cm. Jara...Teks videoHalo Kapten pada soal kita diberikan kubus abcd efgh dengan panjang rusuk 12 cm K adalah titik tengah rusuk AB dan kita akan menentukan jarak titik k ke garis HC kubus abcd efgh nya seperti ini dengan tengah-tengah AB kemudian kita Gambarkan garis AC dan jarak titik k ke garis HC adalah panjang ruas garis yang ditarik dari titik A yang tegak lurus terhadap garis dengan kita misalkan saja ini adalah titik p dengan Cafe tegak lurus AC maka jarak titik k ke garis HC adalah bentuk segitiga untuk karena Dari mana kita punya kan panjang diagonal bidang dari suatu kubus yaitu panjang rusuk 3 √ 2 maka panjang sisinya adalah 12 cm berdasarkan segitiga siku-siku ABC dengan sisi miring maka c k = akar dari jumlah kuadrat sisi-sisi lainnya yaitu k b kuadrat ditambah B C kuadrat maka di tengah-tengah AB berarti sama panjang dengan AB panjangnya berdasarkan setengahnya dari 12 cm yaitu 6 cm punya masing-masing panjangnya dan kita akan peroleh di sini. Yang mana akar 180 bisa kita Sederhanakan menjadi 6 akar 5 cm untuk panjang HK disini kita perhatikan pada saat ini membentuk persegi panjang adalah sudut siku-siku berhenti di sini juga merupakan sudut siku-siku berarti segitiga h k adalah segitiga siku-siku dengan a. Hanya ini juga merupakan diagonal bidang pada kubus, maka hal-hal yang panjangnya 12 cm kita terapkan teorema Pythagoras pada segitiga siku-siku haknya maka K adalah sisi miring kita akan memperoleh haknya gimana 12 akar 2 kuadrat berarti 12 2 dikali 12 akar 2 akar 2 dikali akar 2 adalah 2 sehingga hanya = akar 324 yaitu = 18 centi meter, selanjutnya kita misalkan saja di sini adalah sudut yang sebesar Alfa dan kita terapkan aturan cosinus pada segitiga c k h, maka kita akan memperoleh kos dengan rumus seperti ini tinggal kita ganti nilai-nilainya yang sudah kita peroleh di sini kita hitung cos Alfa = 1 per akar 2 yang mana akar2nya kita rasionalkan dengan cara kita kalikan disini akar 2 dengan √ 2 * penyebut dikali akar 2 maka x √ 2 maka a = 1 per 2 x akar 2 untuk segitiga siku-siku menggunakan konsep trigonometri pada segitiga siku-siku maka Sin Alfa = Sisi depan Alfa per sisi miring yaitu di depan Alfa nya kita punya Sisi Cafe dan Sisi miringnya adalah HK Nah karena kau tanya disini = 1/2 √ 2 dan kita ketahui 1/2 √ 2 nilai dari cos 45 derajat sehingga alfanya = 1 Sin Alfa adalah Sin 45derajat yang juga = 1/2 √ berdasarkan rumus berarti Sin Alfa nya Kita kan punya 1 per 2 akar 2 in = KP perhatiannya adalah 18 dan kita kalikan kedua Luasnya sama sama dengan jadi 9 akar 2 = KP atau bisa kita Tuliskan Cafe = 9 √ 2 cm Jarak titik k ke garis HC adalah panjang yaitu 9 akar 2 cm yang sesuai dengan untuk soal ini dan sampai jumpa soal berikutSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul